3.780 \(\int x^2 \sqrt{a+c x^4} \, dx\)

Optimal. Leaf size=234 \[ \frac{a^{5/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{5 c^{3/4} \sqrt{a+c x^4}}-\frac{2 a^{5/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 c^{3/4} \sqrt{a+c x^4}}+\frac{1}{5} x^3 \sqrt{a+c x^4}+\frac{2 a x \sqrt{a+c x^4}}{5 \sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

[Out]

(x^3*Sqrt[a + c*x^4])/5 + (2*a*x*Sqrt[a + c*x^4])/(5*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (2*a^(5/4)*(Sqrt[a] +
Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(
3/4)*Sqrt[a + c*x^4]) + (a^(5/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF
[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(3/4)*Sqrt[a + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0721215, antiderivative size = 234, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {279, 305, 220, 1196} \[ \frac{a^{5/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 c^{3/4} \sqrt{a+c x^4}}-\frac{2 a^{5/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 c^{3/4} \sqrt{a+c x^4}}+\frac{1}{5} x^3 \sqrt{a+c x^4}+\frac{2 a x \sqrt{a+c x^4}}{5 \sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[a + c*x^4],x]

[Out]

(x^3*Sqrt[a + c*x^4])/5 + (2*a*x*Sqrt[a + c*x^4])/(5*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (2*a^(5/4)*(Sqrt[a] +
Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(
3/4)*Sqrt[a + c*x^4]) + (a^(5/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF
[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(3/4)*Sqrt[a + c*x^4])

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int x^2 \sqrt{a+c x^4} \, dx &=\frac{1}{5} x^3 \sqrt{a+c x^4}+\frac{1}{5} (2 a) \int \frac{x^2}{\sqrt{a+c x^4}} \, dx\\ &=\frac{1}{5} x^3 \sqrt{a+c x^4}+\frac{\left (2 a^{3/2}\right ) \int \frac{1}{\sqrt{a+c x^4}} \, dx}{5 \sqrt{c}}-\frac{\left (2 a^{3/2}\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+c x^4}} \, dx}{5 \sqrt{c}}\\ &=\frac{1}{5} x^3 \sqrt{a+c x^4}+\frac{2 a x \sqrt{a+c x^4}}{5 \sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}-\frac{2 a^{5/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 c^{3/4} \sqrt{a+c x^4}}+\frac{a^{5/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 c^{3/4} \sqrt{a+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0094407, size = 51, normalized size = 0.22 \[ \frac{x^3 \sqrt{a+c x^4} \, _2F_1\left (-\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{c x^4}{a}\right )}{3 \sqrt{\frac{c x^4}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[a + c*x^4],x]

[Out]

(x^3*Sqrt[a + c*x^4]*Hypergeometric2F1[-1/2, 3/4, 7/4, -((c*x^4)/a)])/(3*Sqrt[1 + (c*x^4)/a])

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 112, normalized size = 0.5 \begin{align*}{\frac{{x}^{3}}{5}\sqrt{c{x}^{4}+a}}+{{\frac{2\,i}{5}}{a}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}{\frac{1}{\sqrt{c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^4+a)^(1/2),x)

[Out]

1/5*x^3*(c*x^4+a)^(1/2)+2/5*I*a^(3/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c
^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(
1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{4} + a} x^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + a)*x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{c x^{4} + a} x^{2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + a)*x^2, x)

________________________________________________________________________________________

Sympy [C]  time = 0.950242, size = 39, normalized size = 0.17 \begin{align*} \frac{\sqrt{a} x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**4+a)**(1/2),x)

[Out]

sqrt(a)*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{4} + a} x^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + a)*x^2, x)